Gujarati
Hindi
3-1.Vectors
medium

The components of $\vec a = 2\hat i + 3\hat j$ along the direction of vector $\left( {\hat i + \hat j} \right)$ is

A

$\left( {\hat i + \hat j} \right)$

B

$\frac{1}{{2\,}}\,\left( {\hat i + \hat j} \right)$

C

$\frac{5}{\sqrt{2}}\,\left( {\hat i + \hat j} \right)$

D

$\frac{5}{\sqrt{2}}\,\left( {\hat i - \hat j} \right)$

Solution

The vector component of $\mathrm{A}$ in the direction of $\mathrm{B}$ is $A \cos \theta=\frac{5}{\sqrt{2}}$

Vector $\mathrm{A}=2 \hat{i}+3 \hat{j}$

Vector $\mathrm{B}=\hat{i}+\hat{j}$

We know that,

The vector component of $A$ in the direction of $B$ is

$\vec{A} \cdot \vec{B}=|A||B| \cos \theta$

$A \cos \theta=\frac{\vec{A} \cdot \vec{B}}{|B|}$

$A \cos \theta=\frac{2 \hat{\imath}+3 \hat{\jmath} \cdot \hat{\imath}+\hat{\jmath}}{\sqrt{2}}$

$A \cos \theta=\frac{5}{\sqrt{2}}$

Hence, The vector component of $A$ in the direction of $B$ is $A \cos \theta=\frac{5}{\sqrt{2}}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.